

University of Nottingham

Genetic relationships between methane emission and milk yield, live weight and dry matter intake

I.S. Breider, E. Wall, P.C. Garnsworthy, J.E. Pryce

Scottish Government Riaghaltas na h-Alba gov.scot

AGRICULTURE VICTORIA

- Dairy cattle
 - 20% GHG (livestock sector)
 - 46.5% is enteric CH₄
- Genetic selection to reduce CH₄ is possible
 - Genetic parameters
- Effects of selection on CH₄ on other traits?
 - National breeding goals

- Estimate heritability and genetic and phenotypic correlations between CH₄ and MY (milk yield), LWT (live weight), and DMI (dry matter intake)
- 2. Quantify the relationship between DMI and CH₄ independent of the influence of MY or LWT
- 3. Investigate responses to selection for MY, DMI and CH₄

- Estimate heritability and genetic and phenotypic correlations between CH₄ and MY (milk yield), LWT (live weight), and DMI (dry matter intake)
- 2. Quantify the relationship between DMI and CH₄ independent of the influence of MY or LWT
- 3. Investigate responses to selection for MY, DMI and CH₄

Data

- •314 Holstein cows
 - Ellinbank research farm in Victoria, Australia
- •Phenotypic data
 - 400 observations on MY, LWT, DMI (1-3/cow)
 - 308 CH₄ observations
 - 3 batches each spring
 - SF₆ tracer technique
 - Concordance correlation coefficient with respiration chambers is 0.84 (Deighton, 2013)

Data •314 Holstein cows

Materials

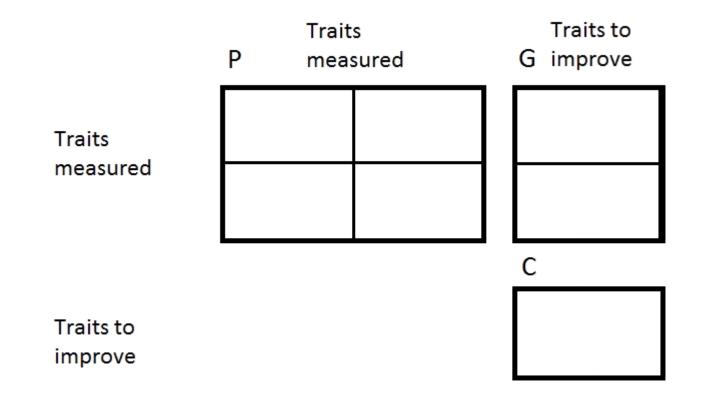
•Phenotypic data

	Mean	Min	Max	St dev	Nr obs
MY (kg/d)	25.17	10.81	39.02	4.98	410
LWT/10 (kg)	56.16	41.52	78.5	6.86	409
DMI (kg/d)	23.03	10.85	31.34	3.61	407
CH ₄ /10 (g/d)	44.81	25.16	67.51	7.77	308

Data •314 Holstein cows

- •Genotypic data
 - 44,936 SNPs/animal available after quality control

Universitu o



Phenotypic and genetic parameters
•Genomic REML → ASRemI software (Gilmour *et al.* 2009)
•Tetravariate linear mixed model:

- MY = μ + lact.WIM + afc + expbatch + a + e
- LWT = μ + lact + WIM + afc + expbatch + a + e
- DMI = μ + WIM.leg5 + expyear + a + e
- $CH_4 = \mu + WIM.leg5 + expbatch + a + e$

Taken from Cameron (1997)

Selection index theory (Hazel, 1943)

Universitu o

•Calculate the correlated response

- All traits included as measured traits
- One or multiple traits to improve
- Observations on progeny assumed
- Economic value of traits \$1 AUD or -\$1AUD
- Exploring restricting a trait to no genetic change

Genetic parameters

	MY	LWT	DMI	CH ₄
MY	0.28 (0.09)	0.32	0.51	0.17*
LWT	0.50	0.78 (0.04)	0.58	0.34
DMI	0.78	0.75	0.31(0.08)	0.47
CH ₄	0.26*	0.42	0.34*	0.33 (0.15)

* Not significant

Heritabilities on diagonal, phenotypic correlations above and genetic correlations below.

Goal traits	MY		CH4	
Restricted	None	CH4	None	MY
MY (kg/d)	1.54	1.47	-0.47	0.00
LWT (kg/10)	2.25	1.74	-1.96	-1.34
DMI (kg/d)	1.01	0.97	-0.28	0.03
CH ₄ (g/d/10)	0.89	0.00	-2.94	-2.80

Goal traits	MY		CH4	
Restricted	None	CH4	None	MY
MY (kg/d)	1.54	1.47	-0.47	0.00
LWT (kg/10)	2.25	1.74	-1.96	-1.34
DMI (kg/d)	1.01	0.97	-0.28	0.03
CH ₄ (g/d/10)	0.89	0.00	-2.94	-2.80

• When selecting for MY, CH_4 increases.

Goal traits	MY		CH ₄	
Restricted	None	CH4	None	MY
MY (kg/d)	1.54	1.47	-0.47	0.00
LWT (kg/10)	2.25	1.74	-1.96	-1.34
DMI (kg/d)	1.01	0.97	-0.28	0.03
CH₄ (g/d/10)	0.89	0.00	-2.94	-2.80

- When selecting for MY, CH₄ increases.
- When restricting CH_4 (no genetic change), MY still increases but less.

Goal traits	MY		CH4	
Restricted	None	CH4	None	MY
MY (kg/d)	1.54	1.47	-0.47	0.00
LWT (kg/10)	2.25	1.74	-1.96	-1.34
DMI (kg/d)	1.01	0.97	-0.28	0.03
CH₄ (g/d/10)	0.89	0.00	-2.94	-2.80

- When selecting for MY, CH₄ increases.
- When restricting CH_4 (no genetic change), MY still increases but less.

This is as expected (genetic correlation = 0.26)

Goal traits	MY, CH ₄		MY, DMI		MY, CH ₄ ,	DMI
Restricted	None	DMI	None	CH ₄	None	LWT
MY (kg/d)	0.35	0.07	1.00	0.91	-0.19	0.34
LWT (kg/10)	-0.79	-1.52	-0.49	-0.95	-2.15	0.00
DMI (kg/d)	0.25	0.00	0.17	0.11	-0.24	0.35
CH ₄ (g/d/10)	-2.53	-2.74	0.66	0.00	-2.82	-2.42

Goal traits	MY, CH ₄		MY, DMI		MY, CH ₄ ,	DMI
Restricted	None	DMI	None	CH ₄	None	LWT
MY (kg/d)	0.35	0.07	1.00	0.91	-0.19	0.34
LWT (kg/10)	-0.79	-1.52	-0.49	-0.95	-2.15	0.00
DMI (kg/d)	0.25	0.00	0.17	0.11	-0.24	0.35
CH ₄ (g/d/10)	-2.53	-2.74	0.66	0.00	-2.82	-2.42

• When selecting for MY AND CH_4 , both traits improve, DMI increases.

Goal traits	MY, CH ₄		MY, DMI	MY, DMI		DMI
Restricted	None	DMI	None	CH ₄	None	LWT
MY (kg/d)	0.35	0.07	1.00	0.91	-0.19	0.34
LWT (kg/10)	-0.79	-1.52	-0.49	-0.95	-2.15	0.00
DMI (kg/d)	0.25	0.00	0.17	0.11	-0.24	0.35
CH ₄ (g/d/10)	-2.53	-2.74	0.66	0.00	-2.82	-2.42

• When selecting for MY AND CH_4 , both traits improve, DMI increases.

Goal traits	MY, CH_4		MY, DMI		MY, CH ₄ ,	DMI
Restricted	None	DMI	None	CH ₄	None	LWT
MY (kg/d)	0.35	0.07	1.00	0.91	-0.19	0.34
LWT (kg/10)	-0.79	-1.52	-0.49	-0.95	-2.15	0.00
DMI (kg/d)	0.25	0.00	0.17	0.11	-0.24	0.35
CH ₄ (g/d/10)	-2.53	-2.74	0.66	0.00	-2.82	-2.42

- When selecting for MY AND CH_4 , both traits improve, DMI increases.
- When selecting for feed efficiency (MY AND DMI), MY, DMI and CH_4 increase.

Goal traits	MY, CH_4		MY, DMI		MY, CH ₄ ,	DMI
Restricted	None	DMI	None	CH ₄	None	LWT
MY (kg/d)	0.35	0.07	1.00	0.91	-0.19	0.34
LWT (kg/10)	-0.79	-1.52	-0.49	-0.95	-2.15	0.00
DMI (kg/d)	0.25	0.00	0.17	0.11	-0.24	0.35
CH ₄ (g/d/10)	-2.53	-2.74	0.66	0.00	-2.82	-2.42

- When selecting for MY AND CH_4 , both traits improve, DMI increases.
- When selecting for feed efficiency (MY AND DMI), MY, DMI and CH_4 increase.

Goal traits	MY, CH ₄		MY, DMI	MY, DMI		DMI
Restricted	None	DMI	None	CH ₄	None	LWT
MY (kg/d)	0.35	0.07	1.00	0.91	-0.19	0.34
LWT (kg/10)	-0.79	-1.52	-0.49	-0.95	-2.15	0.00
DMI (kg/d)	0.25	0.00	0.17	0.11	-0.24	0.35
CH ₄ (g/d/10)	-2.53	-2.74	0.66	0.00	-2.82	-2.42

• When selecting for MY, CH_4 AND DMI all traits decrease.

Goal traits	MY, CH ₄		MY, DMI		MY, CH ₄ , DMI	
Restricted	None	DMI	None	CH ₄	None	LWT
MY (kg/d)	0.35	0.07	1.00	0.91	-0.19	0.34
LWT (kg/10)	-0.79	-1.52	-0.49	-0.95	-2.15	0.00
DMI (kg/d)	0.25	0.00	0.17	0.11	-0.24	0.35
CH ₄ (g/d/10)	-2.53	-2.74	0.66	0.00	-2.82	-2.42

• When selecting for MY, CH_4 AND DMI all traits decrease.

- Methane emission is heritable ($h^2 = 0.33 (0.15)$)
- Trade-off between the scale of reduction in methane emission and the scale of increase in milk yield
- More traits play a role in national breeding goals
 - Possible interactions with fertility and longevity traits
- Possible to increase milk yield AND decrease methane
 - Dry matter intake will increase and therefore feed costs increase

University of Nottingham

Acknowledgements

Thank you for your attention

 \mathbf{X}

Scottish Government Riaghaltas na h-Alba gov.scot

- Methane emission is heritable ($h^2 = 0.33$)
- Trade-off between the scale of reduction in methane emission and the scale of increase in milk yield
- More traits play a role in national breeding goals
 - Possible interactions with fertility and longevity traits
- Possible to increase milk yield AND decrease methane
 - Dry matter intake will increase and therefore feed costs increase

Conditional (co)variances •Relationship between DMI and CH_4 , independent of MY, and LWT.

$$\sigma^{2}DMI^{*} = \sigma^{2}DMI - \frac{\sigma^{2}MY, DMI}{\sigma^{2}MY}$$
$$\sigma DMI^{*}, CH_{4}^{*} = \sigma DMI, CH_{4} - \frac{\sigma MY, DMI * \sigma MY, CH_{4}}{\sigma^{2}MY}$$

•DMI and CH_4

	Uncorrected	Corrected for MY	Corrected for LWT
Phenotypic correlation	0.47	0.45	0.36
Genetic correlation	0.34	0.22	0.03

•MY and LWT positively influence the phenotypic and genetic correlation.

 Especially the influence of LWT on the genetic correlation is large